Physiological Role of Kv1.3 Channel in T Lymphocyte Cell Investigated Quantitatively by Kinetic Modeling
نویسندگان
چکیده
Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC) channel, intermediate K+ (IK) channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.
منابع مشابه
Inhibition of T Cell and Stimulation of B Cell Proliferation by Restraint Stress Mediated by Voltage-Gated Potassium Channel 1.3 Expression
Our previous study has showed that restraint stress inhibits T cell proliferation. Kv1.3 plays a key role in the lymphocyte activation process. Here, we investigate the effects of restraint stress on murine splenic T and B cell proliferation and the role of Kv1.3 in the process. 3H-TdR incorporation is used to determine changes in splenocyte proliferation stimulated by Con A or LPS between cont...
متن کاملModulation of T Lymphocyte Calcium Influx Patterns Via the Inhibition of Kv1.3 and Ikca1 Potassium Channels in Autoimmune Disorders
cells play a pivotal role in the pathogenesis of autoimmunity (4). Wulff et al. described that the characteristic potassium channel phenotype of TEM cells in multiple sclerosis (MS) is Kv1.3high IKCa1low, contrasting naïve, and central memory T (TCM) cells, which exhibit a Kv1.3low IKCa1high channel phenotype (1). Therefore the therapeutic relevance of specific Kv1.3 channel inhibitors is of ou...
متن کاملHypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: a possible role in T cell proliferation.
T lymphocytes are exposed to hypoxia during their development and also when they migrate to hypoxic pathological sites such as tumors and wounds. Although hypoxia can affect T cell development and function, the mechanisms by which immune cells sense and respond to changes in O(2)-availability are poorly understood. K(+) channels encoded by the Kv1.3 subtype of the voltage-dependent Kv1 gene fam...
متن کاملAssembly and suppression of endogenous Kv1.3 channels in human T cells
The predominant K+ channel in human T lymphocytes is Kv1.3, which inactivates by a C-type mechanism. To study assembly of these tetrameric channels in Jurkat, a human T-lymphocyte cell line, we have characterized the formation of heterotetrameric channels between endogenous wild-type (WT) Kv1.3 subunits and heterologously expressed mutant (A413V) Kv1.3 subunits. We use a kinetic analysis of C-t...
متن کاملSelective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation.
Kaliotoxin (KTX), a blocker of voltage-gated potassium channels (Kv), is highly selective for Kv1.1 and Kv1.3. First, Kv1.3 is expressed by T lymphocytes. Blockers of Kv1.3 inhibit T lymphocyte activation. Second, Kv1.1 is found in paranodal regions of axons in the central nervous system. Kv blockers improve the impaired neuronal conduction of demyelinated axons in vitro and potentiate the syna...
متن کامل